
Designing a Teaching Mouse ? – Rather …

“Evolution of a Mouse for Teaching Embedded Systems and Control” by Ivan Eumowz

Who needs
clothes

working from
home?

“The ascent of MENG”

Not the
best place
in the line-

up…

I’m gonna
‘ave ‘im –

queue
jumper!

Whoahh…
steady

with those
you two…!

Hmmm..
Nice lice….

HS2?

This is
the life

..

Designing a mouse is something you have all done (or will do) …

… when “Teaching” is added, each of us will have a very different idea of what is required.

My focus for this presentation is on teaching Embedded Systems with a Micromouse.

It is often said that we should learn from history ……

Please bear with me while I rediscover what I can remember of my history with micromouse!

I used to teach microprocessors – Z80, 8051
external address/data bus, ROM, RAM and I/O timing calculations (datasheets!),
8255 PPI, LS138 decoders, discrete logic …..

Then the 87196CA – an 8/16bit automotive microcontroller with external address/data bus and CAN –
using a custom board running MPE FORTH. More timing diagrams and datasheets.

At one point we taught all three processors in the same module – times change.

TICPIC came along (esteemed colleague Andrew Hill) – used for second year embedded systems from late
90’s to present (Microchip 16F877A to 18F4520). Timing calculations/decoder design forgotten – but who
needs timing calculations and decoder design with a microcontroller?

Merging of the 2nd and 3rd year teaching came with using the PIC16F877A for both *TIC-PIC and RoboTIC *

*A lot of TIC here ….. The “not-to-be-used” abbreviation for the Technology Innovation Centre.

Historical musings

*TIC-PIC v1.0 AJ Hill - 2001

This board was designed to be a stand-alone target system,
Effectively unbreakable as there were no external connections.

Excellent for introductory embedded systems – PIC16F877

In later years two further revisions were developed:

1. Two buffered I/O ports (MatrixMultimedia compatible) were
added to extend its capability – *TICPIC2.

2. A 75mm square SMD version of TICPIC1 with on-board PicKit2
debugger and USB serial comms was developed – *TICPIC3
Plug a USB lead into a laptop and it was up and running. The aim
was to give these to students for home use.

(You can see how driven we were to include ‘TIC‘ in everything!)

Initially FORTH on 87C196CA processor
platform developed as a result of
commercial activities.
Later PIC16F74, PIC16F877A.
Swallow Systems drive train, L298
motor drivers, ‘intelligent’ sensors
giving distributed processing.

BEng Electronic Engineering – 3rd Year Embedded Systems – RoboTIC*

*Told you so ….

Modules developed
gradually - 2002 – 2006.
Note the use of Swallow
Systems motor assemblies.

RoboTIC modules (left)
3rd year projects (right)

Later projects:

Dave Stivens (left),

Richard Nock (right)

Both competed in

the UKMM2006 with

their final year

project mice.

Advantages

• Modular construction, distributed processing

• Good for design and build exercises

Disadvantages

• Mechanical problems with the drive train – gear stripping

• High current motor (3.5A stall)

• Limited sensitivity from the ‘wing’ sensors

• Limited control with the chopper/relay drive system

• Limited resolution from the encoders

• Expensive to build, time-consuming to maintain.

• Inelegant and slow

RoboTIC* … Lessons learned, problems identified, time to move on …

*And there it is again …..

New Teaching platform – 18F4520 processor

Symmetrical front/rear IR and Ultrasonic sensors

Spur and Pinion gearing – no more stripped gears.

Low-cost/ low-power motors

Alternate comms bus (I2C) for additional sensors (e.g. US)

Up to 6* encoder resolution ➔ 800ppr

RF and wired RS232 comms for better run-time debugging

Lower cost and better performance cf. ROBOtic

Thought to be a little too much for teaching so simplified…

(SMA => SMB => MyTEEmouse) but retained the drive
train.

Studmouse* - 2007/8 - A staff/student development project (Blanca and Cristina from UPM)

*Originally called AutomaTIC – can’t get away from it!

MyTEEmouse. Developed 2008/9 was the teaching platform for
3rd year Embedded Systems and Control from 2010 to 2017.
Re-introduced 2021. A success story.

Students produced own main code for wall-follower
from a set of base libraries developed throughout
the module.
18f4520 processor, LM293D motor driver, RS232
comms, PICkit2 debug, SPI FRAM, 6 wall sensors, +
sufficient I/O for sensors and encoder. (encoders
optional extra for project students).

No build requirement but this was moved down to
second year. Perfectly feasible to build top or bottom
board – even both - as student project. No-one did.

MyTEEmouse* – developed as a teaching platform for Embedded Systems and Control

* As we were by this time the Faculty of Technology, Engineering and the Environment (TEE)

Students were given a pcb to build – mixed thru-hole and surface-mount
devices. This was usable as a stand-alone target board.
They produced their own ‘main’ code from a set of base libraries.

18f2520 processor, LM293D motor driver, RS232 comms, PICkit2 debug, SPI
FRAM + sufficient I/O for sensors.
i.e. a subset of MyTeemouse hardware, and the same processor and tool-
suite as the TICPIC static platform.

BEng Electronic Engineering 2nd Year Electronics Project 2012 : LabRat – a Line Follower

* Originally called Rapido, as Rapid Electronics were very interested in selling it – Don’t ask why it didn’t happen …...

Mechanical base configurable as either a Wall Follower or Line Follower

First batch of IET mice used Myteemouse motor mounts
and gearing as we had stocks. Chassis, wheels and 80-
tooth spur gear was laser-cut from 3mm Perspex.

Labrat controller board was used with these bases in
Second Year Embedded Systems teaching, replacing the
single-function Line Follower platform. Students were
given a choice of LF/WF.

IET Robot Triathlon 2014 and BEng Electronic Engineering 2nd Year Embedded Systems

A key successful element for 2nd year teaching was the LabRat controller board itself.
- the students built and debugged it themselves
- Sufficient I/O for Line and Wall follower, and of course could be used for many other things
- Sufficient I/O for optional encoders
- Code and peripheral compatibility with TICPIC and a logical next step
- It was NOT a structural component of the robot design giving flexibility in use
- It was a stand-alone PIC18F2520 target system with on-board H-Bridge.

At this point we had created a family of compatible devices for each level of the course,
and we had a course that had all requisite elements for successful project work.

Myteemouse
Very successful for students, staff development and Open Days for parents and prospective students.

LabRat was in continual development from 2012 through to 2016 eventually using N20 motors.

TICPIC 1,2 used mainly in 2nd year teaching for introduction to Embedded Systems and C programming.

We also had a first year module “Engineering Practice”, that taught Solidworks and Eagle PCB on a project
led programme involving design and manufacture of a finished product. Students designed a PCB, had it
manufactured in-house, and designed an enclosure for 3D print.

Personal development model
Faulhaber Motors
9:36 pinion + ring gear for minimum width (65mm x 100mm)
16-bit DSPIC33EP256MU806 processor
Gyro/Accelerometer – LSM330DLC
FRAM, Bluetooth and USB comms for data acquisition
Nylon 3D printed wheels and motor mounts..

A bit of ‘me’ time …. A step up to the DSPIC33EP and MPLABX MiniMouse/ PUMBA - 2014/15

Development Model / Student Project
(Manuel Serrano Revuelta => MSR)
Mirrored 10:1 N20 Motors
AS5045 magnetic encoders (in-house) to reduce width (75mm x
75mm)
16-bit DSPIC33EP256MU806 processor
Designed as a base for both line and wall sensors

3rd Year BEng Electronic Engineering Project Placement Student from UPM - MSRV2 - 2014

This is where the 4-wheel N20 drive originated to give
a slave axle for the magnetic encoders.

YALF 2016
Configured for breadboard/module build.

LabRat 2016 controller board, self-build sensor board

Students used PCB design tools (EAGLE) for the
sensor board with in-house manufacture. They
also built and tested the LabRat controller
board. A base set of libraries was provided for
test and teaching purposes.

N20 motors used for first time for a teaching
platform. Base laser-cut, wheels and motors 3D
printed.

BEng Electronic Engineering 2nd Year Electronics Project – N20 motors - YALF 2016

By September 2021 -
• MyTEEmouse and LabRat no longer used – new teaching staff, different approaches, course changes.
• Inclusion of Arduino in teaching at 2nd year 1st semester, Microchip TICPIC at 2nd year 2nd semester
• UKMARSbot used in 2nd Year
• Use of TICPIC for teaching 3rd year Embedded Systems and Control
• No 3D modelling, no PCB design, no build experience
• No lab-time as a result of COVID19.

In July 2017 line-follower and wall-follower were a focus for design, build and programming at all
years for Electronic Project, Embedded Systems, and Embedded Systems and Control.

All students that reached the final year had experience of PCB and Mechanical design, and were
relatively adept at C programming using MPLAB and the PIC18F4520 family.

2017 – 2021: The Dark Ages …..

In 2021/22
With no suitable alternative available for Embedded Systems and Control MyTEEmouse was resurrected and used
to teach an appropriate syllabus based on the development of a DC-motor PD positional controller. I also picked
up a 4th year Project Student!

1. Mechanics/Motors : Possibly the biggest issue for potential builders
The only suitable cheap COTS drive-train is the N20 motor assembly with optional crude encoders.
Other motors require custom mounts, gearing and encoders.
Wheels and tyres – not easy to find. 3D print what we can.

2. Power:
Lipo, NiCd, PP3 alkaline? – PP3 for teaching.

3. Program development
Development tools : IDE, Compiler - assume C/C++?
Debuggers/Simulators/Target boards

4. Processor choice - based on target user, simplicity or capability?
Single option or multi choice? - disadvantage of multi-choice is additional workload for resource generation
PIC8,16,32 bit ; ATMEL/Arduino; STM32; ESP-32; Other?

5. Communications: wired/wireless/both
6. On-board peripherals: FRAM, Gyro/Accelerometer. Use of modules where appropriate.

MEng 4th year Project 2021/22: Geraint Leahy and Anthony Wilcox

Initial assessment

“The design and development of a small autonomous robot for teaching robotics to engineering students with
the aim of entering the UK Micromouse competition”

Who are the target users? - University / College / School / Club / Individual?

What are the target disciplines? - Software Engineering (SE), Electronic Engineering(EE),

Mechatronics(ME), Control Engineering (CE), Mechanical (M)

What is the teaching element – hardware design, software, control, fabrication, all of the

above?

What are the requirements for a micromouse teaching platform?

Should it be a kit? Should it be a 'build' or a use 'platform’?

What level of documentation is required?

How much software should be provided? - base functionality, full demo code?

Should a virtual teaching tool be used?

How much should it cost? What cost development tools?

Is a micromouse/line-follower the best option?

Would single-function platforms be a better option?

Does it need to be competitive? – if so at what level?

What processors to use? 8/16/32 bit – does it matter?

What language to use?

IDE – should we follow the trend for code generators?

…………and many, many more …..

There are more questions than answers ….

Far too many questions with different answers from everyone I suspect …

So I set my target users as Final year Degree in any Engineering discipline, and I chose:

• Microchip as I was familiar with MPLABX for 8/16 bit devices, and the tool-suite is free.

• A 32-bit motor control microcontroller with Hardware FPU and available target board

• A 4-wheel mouse as I already had a workable drive-train (2014) that could be modified and 3D printed.

• Extended shaft N20 motors with magnetic encoders as they are cheap and available.

• 90mm long by 70mm wide, based on a reasonable minimum spacing of the interleaved drive trains.

• A sensor configuration I had used before that worked well.

• A user I/O configuration I had used before that worked well.

• A mix of PTH and SM devices as it was a real pain to build the previous one.

• Modules for motor driver, gyro and Bluetooth – code development in advance and less SMD soldering.

• COST? No point in worrying – Motors as cheap as chips and everything else is similar for any design.

PIC32MK MCJ Curiosity Pro Features

• PIC32MK0512MCJ064, 120 MHz, 512 KB Flash, 64 KB
SRAM
• On-Board debugger (PKoB4)
– Real time Programming and Debugging
– Virtual COM port (VCOM)
– Data Gateway Interface (DGI)
• Arduino Uno R3 compatible interface
• Xplained pro extension compatible interface
• Motor Control interface
• On-Board Temperature Sensor
• CAN interface
• User buttons
• User LEDs

The PIC32MK0512MCJ064 processor has everything a micromouse desires, and more….

Multiple PWM options, nine Output compare modules, three Quadrature Encoder Interfaces, multiple 16/32-bit
timers, two I2C and two SPI modules, up to 30 analog inputs to 8-12bit ADC, GPIO and Programmable Pin Select on
most pins.

No of pins Function Type

3 Debug and Reset Digital PGC,PGD,MCLR

2 RS232 Digital TX,RX

2 I2C Digital SCL, SDA

3+2 SPI Digital SCK,SDO,SDI,CS1,CS2

4 Encoders Digital CH1A,CH1B,CH2A,CH2B

6 Detectors Analogue PT1-6

6 Emitters Digital IR1-6

1 Battery Monitor Analogue VBATT

4 User I/O Digital PB1,PB2,LED1,LED2

10 (!) Power Supply Power VDD x 4, VSS x 4, AVDD, AVSS

6 Motors Digital NFAULT,NSLEEP,PWM1A,PWM1B,PWM2A,PWM2B

49 pins total – so I used the 64-pin version, added flexibility with PPS pin placement.

Meng Electronic Engineering Group Project – 4th Year Student + staff support

Pin assessment for processor

MSRV2 (2014) MENG4A (2022)

Drive-train development

Larger Wheels, Larger central
gear to give more clearance
under the motor while
maintaining ground clearance

AS5045 magnetic encoder

Magnetic encoder on
extended shaft

Double 8x4x3 mm bearings

Drive train is stand-alone - can be replaced with a student
design (Mech) or can be used on alternate base/pcb (Elec)
dependent on the course it is used for – Mech/Elec.

Gyro and Bluetooth modules optional

70mm

90mm

MENG – 2022 Anthony Wilcox and Geraint Leahy

Designed as an MEng Project.

Use of off-the-shelf modules
means more ‘up-front’
breadboarding options, simplified
PCB layout, and smaller footprint
of 70 x 90mm.

6 front sensors at 0,30,90 degrees
9V PP3 or 7V4/11V1 Lipo

FRAM/Bluetooth/RS232 data acq.
3-axis Gyro/Accelerometer

Interleaving N20 motors reduces width,
allowing use of encoders on the
extended shafts. Left and Right motor
mounts identical. Several battery
mount positions

PIC32MK0512MCJ064 I/PT processor
MPLABX with XC32 compiler
Harmony3 code configurator.
Curiosity Pro Target board with PKoB4
PicKit3 or PicKit4 debugger

Meng Electronic Engineering Group Project – 4th Year Student + staff support

MPLABX with Harmony3

Can this design be used for teaching Embedded Systems ?

• A 32-bit microcontroller with a lot of complex peripherals

• Documentation could be better (!)

• Harmony3 configurator to assist with processor and peripheral configuration

• A Curiosity Pro target board with issues

• Needs an external debugger PicKit3 (slow) or preferably PicKit4 (5x faster, 3x the price)

• A clunky IDE with a poor simulator.

What’s new here? We get used to the kinks! Of course this can be used for teaching Embedded Systems.

However - the success of a micromouse for teaching has little to do with the hardware.

To close – some words from a guy who was teaching Advanced Embedded Systems, but who took on
an introductory course also in Embedded Systems.

Integration of micromouse in teaching at any University in the UK will be due to the personal interest of
academic staff – quite often an individual. That individual will need to have some control over
programme content, as continuity from year to year at the same level, and ensuring appropriate
underpinning at lower levels, is essential. Successful implementation also requires a high level of
technical support.

Unfortunately, in my view and from experience, this is where it will only usually succeed in the short-
term. Changes in staff, student intake and course modifications will all combine to phase it out.

I have had 20 years of Micromouse in University teaching – I think that might be a record ?

Introspection

“When I started thinking about what I would change about the class, one of the first things to

go was the Arduino platform it was taught with.

I honestly have no idea why Arduino is used as much as it is in EE / CS embedded education

programs, since it has such poor alignment with most learning outcomes for these classes:

•Difficulty accessing dev environment internals: how do I view the assembly code output

from Arduino? Or the hex file that will get programmed? Can I control how variables are

placed in RAM, or configure the linker or compiler optimization settings in any manner?

•Difficulty accessing hardware internals: there’s no debugger. It’s insane to teach an

embedded systems course with a platform that does not allow you to set breakpoints or

inspect or modify memory.

•Strange, non-standard C preprocessor secret sauce (sic): “void main()”? Nah. Call

functions without declaring them first? Sure. Wait, what headers are included by default?

Who knows. Students leave the course thinking that DDRB, Serial.print() and uint16_t are all

reserved words in C that you can use anywhere.”

How I Teach Embedded Systems - Jay Carlson

https://jaycarlson.net/2019/07/26/how-i-teach-embedded-systems/

“My other (more pragmatic) issue with the Arduino platform is the nonstandard tooling. There are

tons of MCUs students will encounter professionally. These generally all work the same:

You write software in C, and then you compile it, getting some sort of hex file.

You use a debugger or a programmer to communicate with the MCU and load the program code

into the flash memory of the microcontroller, and then you run it.

Most of the time, you have a debugger attached that can set break points, inspect memory, and

receive trace data.

The Arduino Uno ecosystem is not representative or similar to any other microcontroller

ecosystem, so it seems like a bizarre choice.”

How I Teach Embedded Systems - Jay Carlson

Also well worth a look is: Embedded FM Podcast

I feel the same way …….

https://jaycarlson.net/2019/07/26/how-i-teach-embedded-systems/
https://embedded.fm/

“I cannot teach anyone anything, I can only make them think.” - Socrates

END

